4.7 Article

Flow of evaporating, gravity-driven thin liquid films over topography

期刊

PHYSICS OF FLUIDS
卷 18, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2148993

关键词

-

向作者/读者索取更多资源

The effect of topography on the free surface and solvent concentration profiles of an evaporating thin film of liquid flowing down an inclined plane is considered. The liquid is assumed to be composed of a resin dissolved in a volatile solvent with the associated solvent concentration equation derived on the basis of the well-mixed approximation. The dynamics of the film is formulated as a lubrication approximation and the effect of a composition-dependent viscosity is included in the model. The resulting time-dependent, nonlinear, coupled set of governing equations is solved using a full approximation storage multigrid method. The approach is first validated against a closed-form analytical solution for the case of a gravity-driven, evaporating thin film flowing down a flat substrate. Analysis of the results for a range of topography shapes reveal that although a full-width, spanwise topography such as a step-up or a step-down does not affect the composition of the film, the same is no longer true for the case of localized topography, such as a peak or a trough, for which clear nonuniformities of the solvent concentration profile can be observed in the wake of the topography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据