4.7 Article

Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact

期刊

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
卷 195, 期 37-40, 页码 4890-4916

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2005.11.005

关键词

time integration schemes; nonlinear elastodynamics; energy-momenta conserving algorithms; energy dissipation; contact; viscoelasticity

向作者/读者索取更多资源

It is now well established that discrete energy conservation/dissipation plays a key-role for the unconditional stability of time integration schemes in nonlinear elastodynamics. In this paper, from a rigorous conservation analysis of the Hilber-Hughes-Taylor time integration scheme [H. Hilber, T. Hughes, R. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engrg. Struct. Dynam. 5 (1977) 283-292], we propose an original way of introducing a controllable energy dissipation while conserving momenta in conservative strategies like [J. Simo, N. Tarnow, The discrete energy-momentum method: conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys. 43 (1992) 757-792]. Moreover, we extend the technique proposed in [O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg. 190 (13-14) (2000) 1763-1783] to provide energy-controlling time integration schemes for frictionless contact problems enforcing the standard Kuhn-Tucker conditions at time discretization points. We also extend this technique to viscoelastic models. Numerical tests involving the impact of incompressible elastic or viscoelastic bodies in large deformation are proposed to confirm the theoretical analysis. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据