4.7 Article

Anisotropic X-ray peak broadening and twin formation in hematite derived from natural and synthetic goethite

期刊

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
卷 26, 期 1-2, 页码 131-139

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jeurceramsoc.2004.09.032

关键词

goethite; Fe2O3; electron microscopy

向作者/读者索取更多资源

Hematite obtained by dehydration of goethite at temperatures between 250 degrees C and 1000 degrees C was studied by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). Starting materials were goethite mineral and synthetic goethite, respectively. Hematite derived from natural goethite shows narrow X-ray diffraction peak widths with little variation between the reflections and marginal dependence on dehydration temperature. TEM imaging reveals the existence of large (>200 nm) hematite twin domains, which is attributed to slow dehydration kinetics associated with the formation of few hematite nuclei. In contrast, strong anisotropic X-ray diffraction peak broadening is observed for hematite obtained from synthetic needle-shaped goethite at low dehydration temperatures (T < 500 degrees C); the peak widths significantly decrease with increasing dehydration temperature. Anisotropic peak broadening is observed only for reflections, which structure factors are dominated by the iron sub-lattice and which are not common to both twin variants of hematite. In hematite producing the strong anisotropic X-ray peak broadening extremely small twin domains with sizes ranging from 5 nm to 10 nm could be imaged by high-resolution TEM. Further, DSC and TEM observations indicate that dehydration kinetics in coarse-grained natural goethite and fine-grained synthetic goethite differ considerably. It is concluded that during the dehydration reaction taking place at the large surface area of synthetic goethite crystals hematite nuclei with ambient orientation are rapidly formed, thereby creating a finely twinned dehydration product. The experimental results prove that XRD peak broadening is mainly caused by fine twinning. (c) 2005 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据