4.5 Review

Recent applications of affinity interactions in capillary electrophoresis

期刊

ELECTROPHORESIS
卷 27, 期 1, 页码 44-59

出版社

WILEY
DOI: 10.1002/elps.200500516

关键词

affinity capillary electrophoresis; binding studies; capillary electrophoresis; quantitative assays; review

向作者/读者索取更多资源

Systems biology depends on a comprehensive assignment and characterization of the interactions of proteins and polypeptides (functional proteomics) and of other classes of biomolecules in a given organism. High-capacity screening methods are in place for ligand capture and interaction screening, but a detailed dynamic characterization of molecular interactions under physiological conditions in efficiently separated mixtures with minimal sample consumption is presently provided only by electrophoretic interaction analysis in capillaries, affinity CE (ACE). This has been realized in different fields of biology and analytical chemistry, and the resulting advances and uses of ACE during the last 2.5 years are covered in this review. Dealing with anything from small divalent metal ions to large supramolecular assemblies, the applications of ACE span from low-affinity binding of broad specificity being exploited in optimizing selectivity, e.g., in enantiomer analysis to miniaturized affinity technologies, e.g., for fast processing immunoassay. Also, approaches that provide detailed quantitative characterization of analyte-ligand interaction for drug, immunoassay, and aptamer development are increasingly important, but various approaches to ACE are more and more generally applied in biological research. In addition, the present overview emphasizes that distinct challenges regarding sensitivity, parallel processing, information-rich detection, interfacing with MS, analyte recovery, and preparative capabilities remain. This will be addressed by future technological improvements that will ensure continuing new applications of ACE in the years to come.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据