4.7 Article

EPR investigation into the effects of substrate structure on peroxidase-catalyzed phenylpropanold oxidation

期刊

BIOMACROMOLECULES
卷 7, 期 1, 页码 268-273

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm050636o

关键词

-

向作者/读者索取更多资源

The plant polymer lignin represents one of the most structurally diverse natural products and results from the oxidative coupling of phenylpropanoid monomers. Peroxidase catalyses the oxidation of phenylpropanoids to their phenoxyl radicals, and the subsequent nonenzymatic coupling controls the pattern and extent of polymerisation. Using EPR spectroscopy, we have demonstrated that for a series of substrates increased methoxylation increases peroxidase-catalyzed oxidation and that this is most easily achieved with the monomeric alcohols. Dimeric compounds, synthesized to represent the initial products of phenylpropanoid coupling, showed a marked decrease in their ability to be oxidized when compared with the monomeric substrates. These findings demonstrate that the structure of the monomer determines the final composition of lignin, which ultimately effects the overall structure. The results indicate that the polymer grows primarily as a result of the reactivity of the monomers and that polymerization to high molecular weight may be restricted to methoxylated species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据