4.5 Article

Cell adhesion regulates Ser/Thr phosphorylation and proteasomal degradation of HEF1

期刊

JOURNAL OF CELL SCIENCE
卷 119, 期 1, 页码 96-103

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.02712

关键词

human enhancer of filamentation 1 (HEF1); protein phosphatase 2A (PP2A); actin cytoskeleton; cell adhesion; proteasome

资金

  1. NATIONAL CANCER INSTITUTE [R01CA069612] Funding Source: NIH RePORTER
  2. NCI NIH HHS [CA-69612] Funding Source: Medline

向作者/读者索取更多资源

Human enhancer of filamentation 1 (HEF1), a multifunctional docking protein of the Cas family, participates in integrin and growth factor signaling pathways that regulate global cellular processes including growth, motility and apoptosis. HEF1 consists of two isoforms, p105 and p115, the larger molecular weight form resulting from Ser/Thr phosphorylation of p105HEF1. The molecular mechanisms that regulate the interconversion of the two HEF1 species as well as the function of HEF1 Ser/Thr phosphorylation are unknown. Our study reveals that cell adhesion and detachment regulate the interconversion of the two HEF1 isoforms. Experiments using various inhibitors of cytoskeletal organization indicated that disruption of actin microfilaments; but not intermediate filaments or microtubules resulted in a complete conversion of p115HEF1 to p105HEF1. The conversion of p115HEF1 to p105HEF1 was prevented by inhibition of protein phosphatase 2A (PP2A), suggesting that cytoskeletal regulation of PP2A activity controlled the dephosphorylation of p115HEF1. Degradation of endogenous HEF1 was dependent on proteasomes with the p115 species of HEF1 being preferentially targeted for turnover. Dephosphorylation of HEF1 by suspending cells or disrupting actin filaments protected HEF1 from degradation. These results suggest that the adhesion-dependent actin organization regulates proteasomal turnover of HEF1 through the activity of PP2A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据