4.7 Article

The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants

期刊

PHYTOCHEMISTRY
卷 67, 期 18, 页码 2041-2049

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2006.06.025

关键词

Centella asiatica; Ruscus aculeatus; Galphimia glauca; elicitation; triterpenes; ursane saponins; spirostane saponins; galphimine-B; phytosterols

向作者/读者索取更多资源

Considering that exogenously applied methyl jasmonate can enhance secondary metabolite production in a variety of plant species and that 2,3-oxidosqualene is a common precursor of triterpenes and sterols in plants, we have studied Centella asiatica and Galphimia glauca (both synthesizing triterpenoid secondary compounds) and Ruscus aculeatus (which synthesizes steroidal secondary compounds) for their growth rate and content of free sterols and respective secondary compounds, after culturing with or without 100 mu M methyl jasmonate. Our results show that elicited plantlets of G. glauca and to a higher degree C asiatica (up to 152-times more) increased their content of triterpenoids directly synthesized from 2,3-oxidosqualene (ursane saponins and nor-seco-friedelane galphimines, respectively) at the same time as growth decreased. In contrast, the free sterol content of C. asiatica decreased notably, and remained practically unaltered in G. glauca. However, in the case of R.. aculeatus, which synthesizes steroidal saponins (mainly spirostane type) indirectly from 2,3-oxidosqualene after the latter is converted to the plant phytosterol-precursor cycloartenol, while the growth rate and free sterol content clearly decreased, the spirostane saponine content was virtually unchanged (aerial part) or somewhat lower (roots) in presence of the same elicitor concentration. Our results suggest that while methyl jasmonate may be used as an inducer of enzymes involved in the triterpenoid synthesis downstream from 2,3-oxidosqualene in both C asiatica and G. glauca plantlets, in those of C asiatica and R. aculeatus it inhibited the enzymes involved in sterol synthesis downstream from cycloartenol. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据