4.5 Article

A model of non-uniform lung parenchyma distortion

期刊

JOURNAL OF BIOMECHANICS
卷 39, 期 4, 页码 652-663

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2005.01.010

关键词

lung elasticity; bulk modulus; shear modulus; uni-axial distortion

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

A finite element model of mammalian lung parenchyma is used to study the effect of large non-uniform distortions on lung elastic behaviour. The non-uniform distortion is a uni-axial stretch from an initial state of uniform pressure expansion. For small distortions, the parenchymal properties are linearly isotropic and described by two elastic moduli. However, for large distortions, the parenchyma has anisotropic non-linear elastic properties described by five independent elastic moduli dependent on the degree of distortion; they are computed for a range of distortions and initial pressures. E-z, the Young's modulus in the direction of stretch, increases significantly with distortion (epsilon(z)) while E-x, the Young's modulus in the plane perpendicular to the stretch, is approximately constant. The greater the initial pressure, the bigger the difference between the two moduli at larger distortion strains. The shear modulus G(xz) is approximately independent of degree of distortion except at the highest initial pressure. The Poisson's ratio, v(xz) is approximately constant with distortion strain for lower initial pressures, but increases significantly with epsilon(z) at higher pressures. Model predictions of the relation between G(xz) and initial uniform inflation pressure show a good correlation with reported experimental data for small distortion strains in a range of species. The model also exhibits similar behaviour to the experimentally measured uni-axial large deformations of a tri-axially pre-loaded block of parenchyma (Hoppin et al., 1975, Journal of Applied Physiology 39, 742-751). (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据