4.6 Review

Structural modifications of HDL and functional consequences

期刊

ATHEROSCLEROSIS
卷 184, 期 1, 页码 1-7

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.atherosclerosis.2005.08.008

关键词

atherosclerosis; high density lipoprotein; oxidation; modification; glycation

向作者/读者索取更多资源

High density lipoproteins (HDL) are susceptible to structural modifications mediated by various mechanisms including oxidation, glycation, homocysteinylation or enzymatic degradation. Structural alterations of HDL may affect their functional and atheroprotective properties. Oxidants, such as hypochlorous acid, peroxyl radicals, metal ions, peroxynitrite, lipoxygenases and smoke extracts, can alter both surface and core components of HDL. The formation of lipid peroxidation derivatives, such as thiobarbituric acid reactive substances, conjugated dienes, lipid hydroperoxides and aldehydes, is associated with changes of physical properties (fluidity, molecular order) and of apoprotein conformation. Non-enzymatic glycation, generally associated with lipoxidation, leads to form irreversible complexes called advanced glycation end products. These HDL modifications are accompanied with altered biological activities of HDL and associated enzymes, including paraoxonase, CETP and LCAT. Homocysteine-induced modification of HDL is mediated by homocysteine-thiolactone, and can be prevented by a calcium-dependent thiolactonase/paraoxonase. Tyrosylation of HDL induces the formation of dinners and trimers of apo AI, and alters cholesterol efflux. Phospholipases and proteolytic enzymes can also modify HDL lipid and apoprotein structure. HDL modification induces generally the loss of their anti-inflammatory and cytoprotective properties. This could play a role in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer's disease. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据