4.5 Article

Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load

期刊

JOURNAL OF BIOMECHANICS
卷 39, 期 8, 页码 1410-1418

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2005.04.007

关键词

intervertebral disc; mechanics; structure; annulus fibrosus; mechanical properties; degeneration

资金

  1. NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING [R01EB002425, R56EB002425] Funding Source: NIH RePORTER
  2. NIBIB NIH HHS [EB-002425] Funding Source: Medline

向作者/读者索取更多资源

The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m(FFT) = -1.70 degrees/% strain for non-degenerated and -0.95 degrees/% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (r = 0.6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据