4.5 Article

Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model

期刊

JOURNAL OF BIOMECHANICS
卷 39, 期 14, 页码 2573-2582

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2005.09.002

关键词

abdominal aortic aneurysm; stent-graft; type II endoleaks; computational fluid-structure interaction analysis; sac pressure; wall stress; estimation of aneurysm-rupture risk; theoretical stent-graft migration

向作者/读者索取更多资源

Insertion of a stent-graft into an aneurysm to form a new (synthetic) blood vessel and prevent the weakened artery wall from rupture is an attractive surgical intervention when compared to traditional open surgery. However, focusing on a stented abdominal aortic aneurysm (AAA), post-operative complications such as endoleaks may occur. An endoleak is the net influx of blood during the cardiac cycle into the cavity (or sac) formed by the stent-graft and the AAA wall. A natural endoleak source may stem from one or two secondary branches leading to and from the aneurysm, labeled types IIa and IIb endoleaks. Employing experimentally validated fluid-structure interaction solvers, the transient 3-D lumen and cavity blood flows, wall movements, pressure variations, maximum wall stresses and migration forces were computed for types IIa and IIb endoleaks. Simulation results indicate that the sac pressure caused by these endoleaks depends largely on the inlet branch pressure, where the branch inlet pressure increases, the sac pressure may reach the systemic level and AAA-rupture is possible. The maximum wall stress is typically located near the anterior-distal side in this model, while the maximum stent-graft stress occurs near the bifurcating point, in both cases, due to local stress concentrations. The time-varying leakage rate depends on the pressure difference between AAA sac and inlet branch. In contrast, the stent-graft migration force is reduced by type II endoleaks because it greatly depends on the pressure difference between the stent-graft and the aneurysm cavity. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据