4.7 Article

Plant genes link forests and streams

期刊

ECOLOGY
卷 87, 期 1, 页码 255-261

出版社

ECOLOGICAL SOC AMER
DOI: 10.1890/05-0159

关键词

aquatic decomposition; aquatic-terrestrial interaction; cottonwood hybridization; ecological genetics; genetic introgression; genetic variation; hybrids; leaf litter decomposition; macroinvertebrate communities; Populus

类别

向作者/读者索取更多资源

Although it is understood that the composition of riparian trees can affect stream function through leaf litter fall, the potential effects of genetic variation within species are less understood. Using a naturally hybridizing cottonwood system, we examined the hypothesis that genetic differences among two parental species (Populus fremontii and P. angustifolia) and two groups of their hybrids (F-1 and backcrosses to P. angustifolia) would affect litter decomposition rates and the composition of the aquatic invertebrate community that colonizes leaves. Three major findings emerged: (1) parental and hybrid types differ in litter quality, (2) decomposition differs between two groups, a fast group (P. fremontii and F, hybrid), and a slow group (P. angustifolia and backcross hybrids), and (3) aquatic invertebrate communities colonizing P. fremontii litter differed significantly in composition from all other cross types, even though P. fremontii and the F-1 hybrid decomposed at similar rates. These findings are in agreement with terrestrial arthropod studies in the same cottonwood system. However, the effects are less pronounced aquatically than those observed in the adjacent terrestrial community, which supports a genetic diffusion hypothesis. Importantly, these findings argue that genetic interactions link terrestrial and aquatic communities and may have significant evolutionary and conservation implications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据