4.8 Article

Inhibition of Histone Deacetylase in Cancer Cells Slows Down Replication Forks, Activates Dormant Origins, and Induces DNA Damage

期刊

CANCER RESEARCH
卷 70, 期 11, 页码 4470-4480

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-09-3028

关键词

-

类别

资金

  1. Center for Cancer Research, National Cancer Institute, NIH [Z01 BC 006150-19LMP, 1Z01BC010411-09]
  2. University College London

向作者/读者索取更多资源

Protein acetylation is a reversible process regulated by histone deacetylases (HDAC) that is often altered in human cancers. Suberoylanilide hydroxamic acid (SAHA) is the first HDAC inhibitor to be approved for clinical use as an anticancer agent. Given that histone acetylation is a key determinant of chromatin structure, we investigated how SAHA may affect DNA replication and integrity to gain deeper insights into the basis for its anticancer activity. Nuclear replication factories were visualized with confocal immunofluorescence microscopy and single-replicon analyses were conducted by genome-wide molecular combing after pulse labeling with two thymidine analogues. We found that pharmacologic concentrations of SAHA induce replication-mediated DNA damage with activation of histone gamma H2AX. Single DNA molecule analyses indicated slowdown in replication speed along with activation of dormant replication origins in response to SAHA. Similar results were obtained using siRNA-mediated depletion of HDAC3 expression, implicating this HDAC member as a likely target in the SAHA response. Activation of dormant origins was confirmed by molecular analyses of the beta-globin locus control region. Our findings demonstrate that SAHA produces profound alterations in DNA replication that cause DNA damage, establishing a critical link between robust chromatin acetylation and DNA replication in human cancer cells. Cancer Res; 70(11); 4470-80. (C) 2010 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据