4.6 Article Proceedings Paper

A method of measuring stored energy macroscopically using statistically stored dislocations in commercial purity aluminum

向作者/读者索取更多资源

Stored energy from plastic deformation in rolled aluminum has been quantified with both macroscopic and microscopic methods. Differential scanning calorimetry (DSC) and Microhardness tests were used to determine a value for stored energy based on energy released during recrystallization and resistance to plastic flow from the accumulated dislocation content, respectively. For a value of stored energy based only on geometrically necessary dislocations, orientation imaging microscopy (OIM) within a scanning electron microscope (SEM) was used and supported by transmission electron microscopy (TEM) observation of subgrain cell structure. A value for the average misorientation angle that could be associated with the TEM was obtained from the OIM data. The values of stored energy derived from the various analyses were found to be similar with slight overestimation from the OIM technique. Thus, the difference between the macroscopic and microscopic methods represented the statistically stored dislocations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据