4.8 Article

Telomere Dysfunction and DNA-PKcs Deficiency: Characterization and Consequence

期刊

CANCER RESEARCH
卷 69, 期 5, 页码 2100-2107

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-2854

关键词

-

类别

资金

  1. NIH/National Cancer Institute grants [CA-09236-30, CA-043322-20]
  2. DOE [DE-FG02-01ER63239]
  3. NASA [NNJ04HD83G]

向作者/读者索取更多资源

The mechanisms by which cells accurately distinguish between DNA double-strand break (DSB) ends and telomeric DNA ends remain poorly defined. Recent investigations have revealed intriguing interactions between DNA repair and telomeres. We were the first to report a requirement for the nonhomologous end-joining (NHEJ) protein DNA-dependent protein kinase (DNA-PK) in the effective end-capping of mammalian telomeres. Here, we report our continued characterization of uncapped (as opposed to shortened) dysfunctional telomeres in cells deficient for the catalytic subunit of DNA-PK (DNA-PKcs) and shed light on their consequence. We present evidence in support of our model that uncapped telomeres in this repair-deficient background are inappropriately detected and processed as DSBs and thus participate not only in spontaneous telomere-telomere fusion but, importantly, also in ionizing radiation-induced telomere-DSB fusion events. We show that phosphorylation of DNA-PKcs itself (Thr-2609 cluster) is a critical event for proper telomere end-processing and that ligase IV (NHEJ) is required for uncapped telomere fusion. We also find uncapped telomeres in cells from the BALB/c mouse, which harbors two single-nucleotide polymorphisms that result in reduced DNA-PKcs abundance and activity, most markedly in mammary tissue, and are both radiosensitive and susceptible to radiogenic mammary cancer. Our results suggest mechanistic links between uncapped/dysfunctional telomeres in DNA-PKcs-deficient backgrounds, radiation-induced instability, and breast cancer. These studies provide the first direct evidence of genetic susceptibility and environmental insult interactions leading to a unique and ongoing form of genomic instability capable of driving carcinogenesis. [Cancer Res 2009;69(5):2100-7]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据