4.8 Article

Epidermal Growth Factor Receptor/β-Catenin/T-Cell Factor 4/Matrix Metalloproteinase 1: A New Pathway for Regulating Keratinocyte Invasiveness after UVA Irradiation

期刊

CANCER RESEARCH
卷 69, 期 8, 页码 3291-3299

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-1909

关键词

-

类别

资金

  1. Institut de Recherche Pierre Fabre

向作者/读者索取更多资源

Previous studies have established that UV irradiation results in epidermal growth factor receptor (EGFR) activation in keratinocytes. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. Herein, we describe for the first time that UVA-mediated EGFR activation results in P-catenin tyrosine phosphorylation at the Y654 residue responsible for the dissociation of E-cadherin/alpha-catenin/beta-catenin complexes. Moreover, UVA induces an EGFR-dependent, but Wnt-independent, beta-catenin relocalization from the membrane to the nucleus followed by its association with T-cell factor 4 (TCF4). This newly formed beta-catenin/TCF4 complex binds to a specific site on matrix metalloproteinase I (MMPI) promoter and governs MMP1 gene and protein expression, as well as cell migration in collagen and gelatin. Altogether, these results suggest that UVA stimulates keratinocyte invasiveness through two coordinated EGFR-dependent processes: loss of cell-to-cell contact due to beta-catenin/E-Cadherin/alpha-catenin dissociation and increased cell migration through extracellular matrix component degradation due to beta-catenin/TCF4-dependent MMP1 regulation. These events may represent an important step in epidermis repair following UVA injury and their abnormal regulation could contribute to photoaging and photocarcinogenesis. [Cancer Res 2009;69(8):3291-9]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据