4.4 Article

A simplified method for cloning of short interfering RNAs from Brassica juncea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus

期刊

JOURNAL OF VIROLOGICAL METHODS
卷 136, 期 1-2, 页码 217-223

出版社

ELSEVIER
DOI: 10.1016/j.jviromet.2006.05.016

关键词

short interfering RNA; siRNA cloning; Brassica juncea; Turnip mosaic potyvirus; Turnip crinkle cannovirus

资金

  1. Natural Environment Research Council [CEH010021, NER/A/S/2003/00547] Funding Source: researchfish

向作者/读者索取更多资源

RNA silencing is a plant defense mechanism in which virus infected plants produce short interfering RNAs (siRNAs) derived from viral RNA, that attack the virus at the post-transcriptional level. In a previous study on Cymbidium ringspot tombusvirus (CymRSV) infection in Nicotiana benthamiana, siRNAs (determined by cloning and sequencing) predominantly originated from the sense (+) strand of the viral RNA, suggesting that the majority of siRNAs are produced through the direct cleavage of the virus single strand (ss) RNA by the plant Dicer-like enzyme. To test whether this asymmetry in strand polarity is a generic rule for all plant viruses, siRNAs from Brassica juncea, either singly infected by Turnip mosaic potyvirus (TuMV, the family Potyviridae), or doubly infected with TuMV and Turnip crinkle carmovirus (TCV, the family Tombusviridae) were investigated. A simplified siRNA cloning method was developed, using a single ligation reaction to attach both 5' and 3' adapters to the target short RNAs followed by one-step RT-PCR amplification. In the TCV infection, as for the CymRSV infection, siRNAs were produced predominantly (97.6%) from the +ss RNA. However, for TuMV infections, siRNAs were derived from both strands (+/-, 58.1-41.9%), indicating the presence of alternative siRNA production mechanisms. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据