4.8 Article

Distinct Roles for Mammalian Target of Rapamycin Complexes in the Fibroblast Response to Transforming Growth Factor-beta

期刊

CANCER RESEARCH
卷 69, 期 1, 页码 84-93

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-08-2146

关键词

-

类别

资金

  1. National Institutes of General Medical Sciences [GM-54200, GM-55816]
  2. Mayo Foundation
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM054200, R01GM055816, R37GM055816] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex I (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia. [Cancer Res 2009;69(1):84-93]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据