4.6 Article

An enhanced genetic algorithm for structural topology optimization

出版社

WILEY
DOI: 10.1002/nme.1435

关键词

topology optimization; genetic algorithms; bit-array representation; connectivity analysis; black-and-white design; hinge-free-design

向作者/读者索取更多资源

Genetic algorithms (GAs) have become a popular optimization tool for many areas of research and topology optimization an effective design tool for obtaining efficient and lighter structures. In this paper, a versatile, robust and enhanced GA is proposed for structural topology optimization by using problem-specific knowledge. The original discrete black-and-white (0-1) problem is directly solved by using a bit-array representation method. To address the related pronounced connectivity issue effectively, the four-neighbourhood connectivity is used to suppress the occurrence of checkerboard patterns. A simpler version of the perimeter control approach is developed to obtain a well-posed problem and the total number of hinges of each individual is explicitly penalized to achieve a hinge-free design. To handle the problem of representation degeneracy effectively, a recessive gene technique is applied to viable topologies while unusable topologies are penalized in a hierarchical manner. An efficient FEM-based function evaluation method is developed to reduce the computational cost. A dynamic penalty method is presented for the GA to convert the constrained optimization problem into an unconstrained problem without the possible degeneracy. With all these enhancements and appropriate choice of the GA operators, the present GA can achieve significant improvements in evolving into near-optimum solutions and viable topologies with checkerboard free, mesh independent and hinge-free characteristics. Numerical results show that the present GA can be more efficient and robust than the conventional GAs in solving the structural topology optimization problems of minimum compliance design, minimum weight design and optimal compliant mechanisms design. It is suggested that the present enhanced GA using problern-specific knowledge can be a powerful global search tool for structural topology optimization. Copyright (c) 2005 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据