4.8 Article

Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma

期刊

CANCER RESEARCH
卷 68, 期 13, 页码 5246-5256

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-07-6161

关键词

-

类别

资金

  1. NIAAA NIH HHS [P50 AA 11999] Funding Source: Medline

向作者/读者索取更多资源

Cholesterol metabolism is deregulated in carcinogenesis, and cancer cells exhibit enhanced mitochondrial cholesterol content whose role in cell death susceptibility and cancer therapy has not been investigated. Here, we describe that mitochondria from rat or human hepatocellular carcinoma (HC) cells (HCC) or primary tumors from patients with HC exhibit increased mitochondrial cholesterol levels. HCC sensitivity to chemotherapy acting via mitochondria is enhanced upon cholesterol depletion by inhibition of hydroxymethylglutaryl-CoA reductase or squalene synthase (SS), which catalyzes the first committed step in cholesterol biosynthesis. HCC transfection with siRNA targeting the steroidogenic acute regulatory protein StAR, a mitochondrial cholesterol-transporting polypeptide which is overexpressed in HCC compared with rat and human liver, sensitized HCC to chemotherapy. Isolated mitochondria from HCC with increased cholesterol levels were resistant to mitochondrial membrane permeabilization and release of cytochrome c or Smac/DIABLO in response to various stimuli including active Bax. Similar behavior was observed in cholesterol-enriched mitochondria or liposomes and reversed by restoring mitochondrial membrane order or cholesterol extraction. Moreover, atorvastatin or the SS inhibitor YM-53601 potentiated doxorubicin-mediated HCC growth arrest and cell death in vivo. Thus, mitochondrial cholesterol contributes to chemotherapy resistance by increasing membrane order, emerging as a novel therapeutic niche in cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据