4.7 Article

Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression

期刊

QUATERNARY SCIENCE REVIEWS
卷 26, 期 1-2, 页码 37-55

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2006.07.013

关键词

glacial cycles; Mid-Pleistocene transition; geochronology; obliquity; orbital forcing; hypothesis test

向作者/读者索取更多资源

An agemodel not relying upon orbital assumptions is estimated over the last 2 Ma using depth in marine sediment cores as a proxy for time. Agemodel uncertainty averages +/- 10 Ka in the early Pleistocene (similar to 2-1 Ma) and +/- 7 Ka in the late Pleistocene (similar to 1 Ma to the present). Twelve benthic and five planktic delta O-18 records are pinned to the agemodel and averaged together to provide a record of glacial variability. Major deglaciation features are identified over the last 2 Ma and a remarkable 33 out of 36 occur when Earth's obliquity is anomalously large. During the early Pleistocene deglaciations occur nearly every obliquity cycle giving a 40 Ka timescale, while late Pleistocene deglaciations more often skip one or two obliquity beats, corresponding to 80 or 120 Ka glacial cycles which, on average, give the similar to 100 Ka variability. This continuous obliquity pacing indicates that the glacial theory can be simplified. An explanation for the similar to 100 Ka glacial cycles only requires a change in the likelihood of skipping an obliquity cycle, rather than new sources of long-period variability. Furthermore, changes in glacial variability are not marked by any single transition so much as they exhibit a steady progression over the entire Pleistocene. The mean, variance, skewness, and timescale associated with the glacial cycles all exhibit an approximately linear trend over the last 2 Ma. A simple model having an obliquity modulated threshold and only three adjustable parameters is shown to reproduce the trends, timing, and spectral evolution associated with the Pleistocene glacial variability. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据