4.3 Article

Pulmonary vascular reactivity of spontaneously hypertensive rats is exacerbated in response to the central administration of exogenous nitric oxide

期刊

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1440-1681.2007.04544.x

关键词

hypertensive rats; hypoxic pulmonary vasoconstriction; nitric oxide; sympathetic nervous system

向作者/读者索取更多资源

1. Centrally, nitric oxide (NO) is a sympathoinhibitory substance. Spontaneously hypertensive rats (SHR) have an impaired central nitroxidergic system and, consequently, NO-mediated decrease in sympathetic activity is exacerbated in SHR compared with Wistar-Kyoto (WKY) rats. We have demonstrated previously that acute hypoxic pulmonary vasoconstriction (HPV) is enhanced by central NO administration. Therefore, in the present study, we hypothesized that accentuation of the HPV by NO would be exacerbated in SHR compared with WKY rats. 2. Mean pulmonary arterial pressure, systemic mean arterial blood pressure, cardiac output and heart rate were measured in pentobarbitone-anaesthetized, artificially ventilated, male SHR and WKY rats. The brief, transient response to a bolus intracerebroventricular (i.c.v.) dose of N-G-nitro-L-arginine methyl ester (L-NAME; 150 mu g in 10 mu L) was recorded in all rats. Upon recovery, rats were exposed to acute hypoxia (10% O-2 for 4 min) before and after the i.c.v. administration of the NO donor 3-[4-morpholinyl]-sydnonimine-hydrochloride (SIN-1; 100 mu g in 10 mu L). 3. In WKY rats, central inhibition of NO synthesis by L-NAME caused a mild increase in tonic pulmonary vascular tone and induced a large systemic pressor response. These responses were not observed in SHR. In contrast, SIN-1 failed to alter tonic pulmonary vascular tone, although it enhanced the HPV in WKY rats and, significantly more so, in SHR. 4. These results confirm that accentuation of the HPV by NO is exacerbated in SHR compared with WKY rats. The mechanism(s) by which the HPV is accentuated by central NO remains to be fully elucidated, but is likely to be associated with the sympathoinhibitory effects of NO and, if so, supports the idea that the nitroxidergic system of the SHR is impaired. Further electrophysiological studies are essential to confirm these assumptions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据