4.4 Article

Comprehensive expression analysis of L-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated versus varying Gleason grade prostate tumors

期刊

HUMAN PATHOLOGY
卷 38, 期 1, 页码 161-170

出版社

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.humpath.2006.07.003

关键词

neuroendocrine differentiation; prostate cancer; chromogranin A; L-dopa decarboxylase; androgen receptor

向作者/读者索取更多资源

Current hormone withdrawal therapies used for treatment of advanced prostate cancer lead to androgen-independent tumor growth. Increased prostatic neuroendocrine (NE) cell density has been implicated in promoting progression of prostate cancer, but the process by which this occurs remains unclear. The aim of this study was to determine whether there is an association of increased NE differentiation with neoadjuvant hormone therapy and Gleason grade. Using adjacently sectioned tissue microarrays, the expression profile of novel and known NE markers were monitored. E-Dopa decarboxylase (DDC), a catecholamine synthesis enzyme and androgen receptor (AR) coregulator protein, was identified as an additional NE marker of prostate cancer. Immunohistochemical analysis of DDC with the established NE markers, chromogranin A and bombesin, revealed a significant increase in NE differentiation after 6 months of hormone therapy and after progression to androgen independence but no apparent correlation with Gleason grade. In addition, dual immunofluorescence analysis revealed that approximately 55% of the mixed population of DDC- and chromogranin A-expressing NE cells continue to express AR. Taken together, these results suggest that the increase of NE differentiation in prostate cancers depends specifically on duration of hormone therapy. This increase may be due to the transdifferentiation of AR-expressing epithelial-derived adenocarcinoma cells into an NE cell phenotype. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据