4.5 Article

Effect of ultrasound-activated microbubbles on the cell electrophysiological properties

期刊

ULTRASOUND IN MEDICINE AND BIOLOGY
卷 33, 期 1, 页码 158-163

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2006.07.029

关键词

contrast; microbubbles; ultrasound; sonoporation; hyperpolarization; ionic channels

向作者/读者索取更多资源

New clinical applications of ultrasound contrast microbubbles extend beyond imaging and diagnosis toward therapeutic applications. Cell membrane permeability and the uptake of substances have been shown to be enhanced by microbubbles under ultrasound stimulation. However, the mechanisms of action of ultrasound-activated microbubbles are still unknown. The aim of our study was to examine how microbubbles and ultrasound interact with cells in an attempt to understand the sonoporation mechanism. The ruptured-patch-clamp whole-cell technique was used to measure membrane potential variations of a single cell. SonoVue microbubbles and mammary breast cancer cell line MDA-MB-231 were used. Ultrasound was applied using single-element transducers of 1 MHz. Microbubbles and cells were simultaneously video monitored during ultrasound exposure. Our results showed that, during sonoporation, a marked cell membrane hyperpolarization occurs (n = 6 cells) at negative pressures above 150 kPa, indicating the activation of specific ion channels while the cell and the microbubbles remain viable. The hyperpolarization was sustained for as long as the microbubbles are in a direct contact with the cell and the ultrasound waves are transmitted. Smaller acoustic amplitudes induced only mild hyperpolarization, whereas shutting off the ultrasound brings the cell membrane potential to its resting value. However, ultrasound alone did not affect the cell membrane potential. A similar hyperpolarization of the cell membrane was observed when a mechanical pressure was applied on the cell through a glass probe. In conclusion, the results demonstrate that microbubbles' oscillations under ultrasound activation entail modifications of the electrophysiologic cell activities by triggering the modulation of ionic transports through the plasmic cell membrane. However, only cells in direct contact with the microbubbles are impacted. The mechanisms involved are likely related to activation of specific channels sensitive to mechanical stresses (stretch-activated channels) and possibly nonspecific ion channels. (E-mail: bouakaz@med.univ-tours.fr) (c) 2006 World Federation for Ultrasound in Medicine & Biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据