3.9 Article

Cryptococcal lipid metabolism: Phospholipase B1 is implicated in transcellular metabolism of macrophage-derived lipids

期刊

EUKARYOTIC CELL
卷 6, 期 1, 页码 37-47

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.00262-06

关键词

-

向作者/读者索取更多资源

Cryptococci survive and replicate within macrophages and can use exogenous arachidonic acid for the production of eicosanoids. Phospholipase B1 (PLB1) has a putative, but uninvestigated, role in these processes. We have shown that uptake and esterification of radiolabeled arachidonic, palmitic, and oleic acids by the Cryptococcus neoformans var. grubii H99 wild-type strain and its PLB1 deletion mutant strain (the Delta plb1 strain) are independent of PLB1, except under hyperosmollar stress. Similarly, PLB1 was required for metabolism of 1-pahnitoyl lysophosphatidylcholine (LysoPC), which is toxic to eukaryotic cell membranes, under hyperosmolar conditions. During both logarithmic and stationary phases of growth, the physiologically relevant phospholipids, dipahnitoyl phosphaticly1choline (DPPC) and dioleoyl phosphatidylcholine, were taken up and metabolized via PLB1. Exogenous DPPC did not enhance growth in the presence of glucose as a carbon source but could support it for at least 24 h in glucose-free medium. Detoxification of LysoPC by reacylation occurred in both the H99 wild-type and the Delta plb1 strains in the presence of glucose, but PLB1 was required when LysoPC was the sole carbon source. This indicates that both energy-independent (via PLB1) and energy-dependent transacylation pathways are active in cryptococci. Phospholipase A, activity was identified by PLB1-independent degradation of 1-palmitoyl-2-arachidonoyl phosphatidylcholine, but the arachidonoyl LysoPC formed was not detoxified by reacylation. Using the human macrophage-like cell line THP-1, we demonstrated the PLB1-dependent incorporation of macrophage-derived arachidonic acid into cryptococcal lipids during cryptococcus-phagocyte interaction. This pool of arachidonate can be sequestered for eicosanoid production by the fungus and/or suppression of host phagocytic activity, thus diminishing the immune response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据