4.7 Article

Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene

期刊

PLANT MOLECULAR BIOLOGY
卷 64, 期 3, 页码 293-303

出版社

SPRINGER
DOI: 10.1007/s11103-007-9152-0

关键词

gibberellic acid; salicylic acid; abscisic acid; signaling; WRKY; alpha-amylase; barley

资金

  1. NCRR NIH HHS [2 P20 RR016463] Funding Source: Medline
  2. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR016463] Funding Source: NIH RePORTER

向作者/读者索取更多资源

It is well known that abscisic acid (ABA) antagonizes gibberellin (GA)-promoted seed germination. Recent circumstantial evidence suggests that salicylic acid (SA) also inhibits seed germination in maize and Arabidopsis. Our study shows that SA blocks barley seed germination in a dosage dependent manner. As an initial effort to addressing the mechanism controlling the crosstalk of SA, GA and ABA signaling in barley, we studied the regulation of alpha-amylases by SA and a WRKY gene whose expression is modulated by these hormones. Assays of alpha-amylase activity reveal that GA-induced alpha-amylase production in aleurone cells is inhibited by bioactive SA, but not its analogs, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid. This inhibitory effect is unlikely due to repressing alpha-amylase secretion or inhibiting alpha-amylase enzyme activities. Northern blot analyses indicate that SA suppresses GA-induced expression of a barley low pI alpha-amylase gene (Amy32b). Because our previous data indicate that ABA-inducible and GA-suppressible WRKY genes inhibit the expression of alpha-amylase genes in rice, we studied the steady state mRNA levels of a barley WRKY gene, HvWRKY38. The expression of HvWRKY38 in barley aleurone cells is down-regulated by GA, but up-regulated by SA and ABA. However, the regulation of HvWRKY38 by SA appears to be different from that of ABA in term of the kinetics and levels of induction. Over-expression of HvWRKY38 in aleurone cells by particle bombardment blocks GA induction of the Amy32b promoter reporter construct (Amy32b-GUS). Therefore, HvWRKY38 might serve as a converging node of SA and ABA signal pathways involved in suppressing GA-induced seed germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据