4.7 Review

Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; Solvation effect on conformational equilibria, tautomerization energies, and activation barriers

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct6001785

关键词

-

向作者/读者索取更多资源

The effect of solvation on conformational equilibria, tautomerization energies, and activation barriers in simple S(N)2 reactions is reproduced by using the self-consistent field coupling of the Kohn-Sham density functional theory (KS-DFT) for electronic structure and the three-dimensional reference interaction site model with the closure approximation of Kovalenko and Hirata (3D-RISM-KH) for molecular solvation structure. These examples are used in order to validate the implementation of the 3D-RISM-KH method in the Amsterdam Density Functional package. The computations of the free energy difference in the trans/gauche conformational equilibrium for 1,2-dichloroethane in different solvents; the relative tautomerization free energy for cytosine, isocytosine, and guanine; and the free energy activation barrier for a CH3X-type (X = F, Cl, Br) S(N)2 reaction exhibit agreement with the experimental data. The method is also applied to the electronic and hydration structure of carbon single-wall nanotubes of different diameters, including the effect of water located in the inner space of the nanotubes. A comparison with continuum models of solvation (including COSMO) as well as with other more precise and computationally more expensive calculations is made to demonstrate the accuracy and predictive capability of the new KS-DFT/3D-RISM-KH method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据