4.6 Article

Engineered networks of oriented microtubule filaments for directed cargo transport

期刊

SOFT MATTER
卷 3, 期 3, 页码 349-356

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b607281j

关键词

-

向作者/读者索取更多资源

Nature uses networks of oriented filaments to guide intracellular movement of cargo. We describe the first method for designing and constructing interconnected networks of oriented microtubules to create a two-dimensional in vitro transport system. Microfabricated open channels with surface-bound kinesin motor proteins are used to orient short microtubule seeds relative to each other. Guided by the channel geometry, the oriented microtubule seeds are then grown into oriented networks of microtubules, which support motility of kinesin-coated nanospheres with a directional preference determined by the microtubule orientation. In contrast to in vitro gliding motility assays where microtubules glide on kinesin-coated surfaces, engineered stationary microtubule networks could simultaneously utilize different motors, e. g. motors walking in opposite directions. Different motors, via their specific scaffolding proteins, could be utilized to selectively transport specific cargos. The presented method is the first step towards building oriented and interconnected microtubule networks with a user-designed geometry at the micron and submicron scale. The resulting platform enables multiple applications, from cargo sorting to adaptive camouflage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据