4.6 Article

Autonomous microfluidics with stimuli-responsive hydrogels

期刊

SOFT MATTER
卷 3, 期 10, 页码 1223-1230

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b706563a

关键词

-

向作者/读者索取更多资源

There has been increasing interest in integrated microfluidic systems because performing biological and chemical laboratory tasks on a single chip is appealing. One straightforward approach to constructing these 'lab on chips' is to fabricate individual components and to assemble them for desired functionalities. As the functionalities of the microfluidic systems become increasingly complicated, more functional components and relevant controls need to be integrated on a miniaturized chip, especially when a closed loop is needed for autonomous functionality. Instead, an emerging approach is to incorporate stimuli-responsive hydrogels directly into microfluidics to reduce the system complexity. Due to the hydrogels' ability of transducing stimuli into mechanical actions in response to their surrounding aqueous environment, hydrogel-based microfluidic elements can act as both sensors and actuators simultaneously, alleviating the requirement of most controls and even power sources. This provides microfluidic systems with autonomous functionalities. In this article, we will focus on a few autonomous microfluidic devices including valves, flow sorters, pH regulators, pumps, mixers, drug-delivery devices, fluidic cooling devices, and liquid microlenses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据