4.4 Article

CORSICA: correction of structured noise in fMRI by automatic identification of ICA components

期刊

MAGNETIC RESONANCE IMAGING
卷 25, 期 1, 页码 35-46

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.mri.2006.09.042

关键词

physiological noise; functional magnetic resonance imaging; spatial independent component analysis; noise reduction

向作者/读者索取更多资源

When applied to functional magnetic resonance imaging (fMRI) data, spatial independent component analysis (sICA), a data-driven technique that addresses the blind source separation problem, seems able to extract components specifically related to physiological noise and brain movements. These components should be removed from the data to achieve structured noise reduction and improve any subsequent detection and analysis of signal fluctuations related to neural activity. We propose a new automatic method called CORSICA (CORrection of Structured noise using spatial Independent Component Analysis) to identify the components related to physiological noise, using prior information on the spatial localization of the main physiological fluctuations in fMRI data. As opposed to existing spectral priors, which may be subject to aliasing effects for long-TR data sets (typically acquired with TR > 1 s), such spatial priors can be applied to fMRI data, regardless of the TR of the acquisitions. By comparing the proposed automatic selection to a manual selection performed visually by a human operator, we first show that CORSICA is able to identify the noise-related components for long-TR data with a high sensitivity and a specificity of 1. On short-TR data sets, we validate that the proposed method of noise reduction allows a substantial improvement of the signal-to-noise ratio evaluated at the cardiac and respiratory frequencies, even in the gray matter, while preserving the main fluctuations related to neural activity. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据