4.6 Article

Electrostatically tuned rate of peptide self-assembly resolved by multiple particle tracking

期刊

SOFT MATTER
卷 3, 期 9, 页码 1194-1202

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b700434f

关键词

-

向作者/读者索取更多资源

Hydrogels formed from the self-assembly of oligopeptides are being extensively studied for biomedical applications. The kinetics of their gelation, as well as a quantitative description of the forces controlling the rate of assembly has not yet been addressed. We report here the use of multiple particle tracking to measure the self-assembly kinetics of the model peptide FKFEFKFE ( KFE8). KFE8 forms well-defined beta-sheet intermediates and is often used as a model peptide system that forms a fibrous network in aqueous solvent. We find that increasing the pH of this system from 3.5 to 4.0 decreases the time of KFE8 gelation by almost hundredfold, from hours to minutes. A remarkable self-similarity between measurements performed at different pH suggests that, although accelerated by the pH increase, gelation follows an invariable mechanism. We propose a semi-quantitative interpretation for the order of magnitudes of gelation time using a simple model for the interaction driving the self-assembly in terms of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Such understanding is important for the development of current and future therapeutic applications ( e.g. drug delivery).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据