4.6 Article

Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo

期刊

ANALYST
卷 132, 期 9, 页码 876-884

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b705552h

关键词

-

向作者/读者索取更多资源

Dopamine and serotonin are important neurotransmitters that interact in the brain. While dopamine is easily detected with electrochemical sensors, the detection of serotonin is more difficult because reactive species formed after oxidation can adsorb to the electrode, reducing sensitivity. Carbon nanotube treatments of electrodes have been used to increase the sensitivity, promote electron transfer, and reduce fouling. Most methods have focused on nanotube coatings of large electrodes and slower electrochemical techniques that are not conducive to measurements in vivo. In this study, we investigated carbon-fiber microelectrodes modified with single-walled carbon nanotubes for the co-detection of dopamine and serotonin in vivo. Using fast-scan cyclic voltammetry, S/N ratios for the neurotransmitters increased after nanotube coating. Electrocatalytic effects of nanotubes were not apparent at fast scan rates but faster kinetics were observed with slower scanning. Nanotube-modified microelectrodes showed significantly less fouling after exposure to serotonin than bare electrodes. The nanotube-modified electrodes were used to monitor stimulated dopamine and serotonin changes simultaneously in the striatum of anesthetized rat after administration of a serotonin synthetic precursor. These studies show that nanotube-coated microelectrodes can be used with fast scanning techniques and are advantageous for in vivo measurements of neurotransmitters because of their greater sensitivity and resistance to fouling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据