4.3 Article

Structural and mechanical properties of fats quantified by ultrasonics

期刊

出版社

WILEY
DOI: 10.1007/s11746-007-1039-3

关键词

ultrasonic; fat crystal network; shear modulus; bulk modulus; mass fractal dimension

向作者/读者索取更多资源

Since the velocity of an ultrasonic wave through a material depends on its density, bulk modulus (K), and shear modulus (G), a new approach to determine the shear elastic modulus and the mass fractal dimension (D) in a fat crystal network was developed. An ultrasonic chirp wave containing a range of frequencies and amplitudes, was used to estimate the structural and mechanical properties of palm oil based fats, crystallized under shear at three different temperatures (20, 25, and 30 degrees C). Considering the fat crystal network as a two-phase system (i.e. liquid and solid fat) the velocity of sound in both phases was obtained separately, assuming that the speed of sound in the oil phase was inversely dependent on the temperature. A constant shear modulus for the solid fraction was obtained experimentally by rheology, which was independent of the sample's nature. These parameters were used for the determination of sample compressibility and its corresponding shear modulus by ultrasonic velocimetry. In addition fractal dimensions (D) were determined by using the relationship of the shear elastic modulus (G) to the mass fraction of the solid fat (phi) in a weak-link regime. The obtained results are comparable and consistent with previously reported fractal dimension values. This method allows online determination of the shear modulus of fats and could be potentially applied for quality control purposes in manufacturing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据