4.4 Article

Effects of Human Oral Mucosal Tissue, Saliva, and Oral Microflora on Intraoral Metabolism and Bioactivation of Black Raspberry Anthocyanins

期刊

CANCER PREVENTION RESEARCH
卷 4, 期 8, 页码 1209-1221

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1940-6207.CAPR-11-0040

关键词

-

类别

资金

  1. NIH [R01 CA129609, RC2 CA148099, R21 CA132138]

向作者/读者索取更多资源

Our oral cancer chemoprevention trial data implied that patient-specific differences in local retention and metabolism of freeze-dried components of black raspberries (BRB) affected therapeutic responsiveness. Subsequent studies have confirmed that anthocyanins are key contributors to BRB's chemopreventive effects. Consequently, functional assays, immunoblotting, and immunohistochemical analyses to evaluate levels and distribution of BRB anthocyanin-relevant metabolic enzymes in human oral tissues were conducted. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) analyses of time course saliva samples collected following BRB rinses were conducted to assess local pharmacokinetics and compare the capacities of three different BRB rinse formulations to provide sustained intraoral levels of anthocyanins. Protein profiles showed the presence of key metabolic enzymes in all 15 oral mucosal tissues evaluated, whereas immunohistochemistry confirmed these enzymes were distributed within surface oral epithelia and terminal salivary ducts. beta-Glucosidase assays confirmed that whole and microflora-reduced saliva can deglycosylate BRB anthocyanins, enabling generation of the bioactive aglycone, cyanidin. LC/MS-MS analyses showed retention of parent anthocyanins and their functional, stable metabolite, protocatechuic acid, in saliva for up to 4 hours after rinsing. Furthermore, postrinse saliva samples contained glucuronidated anthocyanin conjugates, consistent with intracellular uptake and phase II conversion of BRB anthocyanins into forms amenable to local recycling. Our data show that comparable to the small intestine, the requisite hydrolytic, phase II and efflux transporting enzymes necessary for local enteric recycling are present and functional in human oral mucosa. Notably, interpatient differences in anthocyanin bioactivation and capacities for enteric recycling would impact treatment as retention of bioactivated chemopreventives at the target site would sustain therapeutic effectiveness. Cancer Prev Res; 4(8); 1209-21. (C) 2011 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据