4.4 Article

Biomechanical analysis of cages for posterior lumbar interbody fusion

期刊

MEDICAL ENGINEERING & PHYSICS
卷 29, 期 1, 页码 101-109

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2006.02.007

关键词

interbody fusion; lumbar; cage; biomechanics; finite element model

向作者/读者索取更多资源

Interbody fusions using intervertebral cages have become increasingly common in spinal surgery. Computational simulations were conducted in order to compare different cage designs in terms of their biomechanical interaction with the spinal structures. Differences in cage design and surgical technique may significantly affect the biomechanics of the fused spine segment, but little knowledge is available on this topic. In the present study, four 3D finite element models were developed, reproducing the human L4-L5 spinal unit in intact condition and after implantation of three different cage models. The intact model consisted of two vertebral bodies and relevant laminae, facet joints, main ligaments and disc. The instrumented models reproduced the post-operative conditions resulting after implant of the different cages. The three considered devices were hollow threaded titanium cages, the BAK TM (Zimmer Centerpulse, Warsaw, IN, USA), the Interfix (TM) and the Interfix Fly (TM) (both by Medtronic Sofamor Danek, Memphis, TN, USA). Simulations were run imposing various loading conditions, under a constant compressive preload. A great increase in the stiffness induced on the spinal segment by all cages was observed in all the considered loading cases. Stress distributions on the bony surface were evaluated and discussed. The differences observed between the biomechanics of the instrumented models were associated with the geometrical and surgical features of the devices. (c) 2006 IPEM. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据