4.7 Article

An efficient protocol to process landsat images for change detection with tasselled cap transformation

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LGRS.2006.887066

关键词

change detection; enhanced wetness difference index (EWDI); landsat data correction; mountain pine beetle red attack; tasselled cap transformation (TCT)

向作者/读者索取更多资源

Change detection approaches, such as computing change in spectral indexes through time, are a mature and established science, which is increasingly being applied in operational remote sensing programs. The quality and consistency of the changes detected using these approaches are linked, however, to the processing of the imagery required to address issues related to image radiometry, normalization, and computation of the spectral indexes. These processing steps are typically undertaken independently, providing opportunities for computation errors, increasing disk storage needs, and consuming processing time. In this letter, we present an approach for combining these processing steps to facilitate a more streamlined and computationally efficient approach to change detection using Landsat-5 and -7. The individual elements of the algorithm (raw Landsat-5 or -7, to calibrated Landsat-7, to top-of-atmosphere reflectance, to tasselled cap components) are described, followed by a description and illustration of the protocol to algebraically combine the elements. Rather than producing intermediate outputs, the sequentially integrated data processing protocol operates in memory and produces only the desired outputs. The proposed approach mitigates opportunities for inappropriate scaling between processing steps, the consistency of which is especially important for threshold-based change detection procedures. In addition, savings in both processing time and disk storage are afforded through the combination of processing steps, with processing of the time-1 images reduced from three to two stages and five to two stages for the time-2 images, resulting in savings of 50% and 69% in computing times and disk space requirements, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据