4.5 Review

MIRO: Microwave instrument for rosetta orbiter

期刊

SPACE SCIENCE REVIEWS
卷 128, 期 1-4, 页码 561-597

出版社

SPRINGER
DOI: 10.1007/s11214-006-9032-y

关键词

comets; MIRO; Rosetta; submillimeter spectroscopy; spacecraft instruments

向作者/读者索取更多资源

The European Space Agency Rosetta Spacecraft, launched on March 2,2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively. the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency hands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180MHz total bandwidth and 44kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species -CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, (H2O)-O-16, (H2O)-O-17 and (H2O)-O-18. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据