4.6 Article

Statins induce differentiation and cell death in neurons and astroglia

期刊

GLIA
卷 55, 期 1, 页码 1-12

出版社

WILEY
DOI: 10.1002/glia.20422

关键词

astrocyte; brain; rat; HMG-CoA reductase inhibitor; cholesterol; sterol-regulatory element binding protein; isoprenoids; stellation; cytotoxicity

向作者/读者索取更多资源

Statins are potent inhibitors of the hydroxy-methyl-glutarylcoenzyme A reductase, the rate limiting enzyme for cholesterol biosynthesis. Experimental and clinical studies with statins suggest that they have beneficial effects on neurodegenerative disorders. Thus, it was of interest to characterize the direct effects of statins on CNS neurons and glial cells. We have treated defined cultures of neurons and astrocytes of newborn rats with two lipophilic statins, atorvastatin and simvastatin, and analyzed their effects on morphology and survival. Treatment of astrocytes with statins induced a time- and dose-dependent stellation, followed by apoptosis. Similarly, statins elicited programmed cell death of cerebellar granule neurons but with a higher sensitivity. Analysis of different signaling cascades revealed that statins fail to influence classical pathways such as Akt or MAP kinases, known to be activated in CNS cells. In addition, astrocyte stellation triggered by statins resembled dibutryl-cyclic AMP (db-cAMP) induced morphological differentiation. However, in contrast to db-cAMP, statins induced upregulation of low-density lipoprotein receptors, without affecting GFAP expression, indicating separate underlying mechanisms. Analysis of the cholesterol biosynthetic pathway revealed that lack of mevalonate and of its downstream metabolites, mainly geranylgeranyl-pyrophosphate (GGPP), is responsible for the statin-induced apoptosis of neurons and astrocytes. Moreover, astrocytic stellation tiriggered by statins was inhibited by mevalonate and GGPR Interestingly, neuronal cell death was significantly reduced in astrocyte/neuron co-cultures treated with statins. We postulate that under these conditions signals provided by astrocytes, e.g., isoprenoids play a key role in neuronal survival. (c) 2006 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据