4.2 Article Proceedings Paper

A novel antibacterial gene transfer treatment for multidrug-resistant Acinctobactcr baumannii-induced burn sepsis

期刊

JOURNAL OF BURN CARE & RESEARCH
卷 28, 期 1, 页码 6-12

出版社

OXFORD UNIV PRESS
DOI: 10.1097/BCR.0b013e31802c8861

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM-61746] Funding Source: Medline
  2. PHS HHS [R01 MG-42577] Funding Source: Medline
  3. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM061746] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Sepsis caused by multidrug-resistant bacterial infections in critically injured patients has become a major clinical problem. Recently, Acinetobacter baumannii (A-B) wound infections, especially in our critically injured soldiers fighting in Iraq and Afghanistan, is posing a major clinical problem and an economic burden. ConjuGon, Inc., has developed a novel antibacterial therapeutic technology using bacterial conjugation. The donor cells are attenuated Escherichia coli carrying a conjugative plasmid. The expression of bactericidal genes cloned on the plasmid is tightly repressed in the donor cells but becomes de-repressed once mobilized into a pathogen and disrupts protein synthesis. Here, we tested the efficacy of this novel conjugation technology to control and eradicate a drug-resistant clinical isolate of AB wound infection both in vitro and in a murine burn sepsis model. C57Blk/6J mice were divided into burn (B) and burn sepsis (BS) groups. All animals received a 12% TBSA dorsal scald ftill-thickness burn. The BS group was inoculated with multidrug-resistant AB (1 x 10(5) colony-forming units [CFU]) at the burn wound site. BS animals were either untreated or treated with increasing concentrations (10(3)-10(10) CFU) of attenuated donor E. coli encoding bactericidal proteins. The survival rate was monitored for 10 days. The ability of donor cells to significantly diminish AB levels in the burn wound 24 hours after injury was determined by quantitative cultures. Donor cells were highly effective in killing AB in vitro. In the burn sepsis model, 90% B group animals survived, and 40% to 50% BS animals survived with no treatment in 5 to 6 days. Treatment with donor cells at 10(10) to 10(6) provided significant survival advantage (P < .05). Quantitative cultures of burn wounds revealed that AB numbers increased from 3 x 10(4) CFU to 7.8 +/- 4.4 x 10(9) CFU in 24 hours in the untreated group. Single treatment with donor cells (10(10) CFU) significantly reduced AB in the burn wound to less than the levels seeded into the wound (1.23 +/- 0.5 x 10(4) CFU; P < .05). Taken together, these results indicate that this novel technology is an efficient method to control drug-resistant AB burn wound infections and prevent their systemic spread.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据