4.7 Article

An optimal radial profile order based on the golden ratio for time-resolved MRI

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 26, 期 1, 页码 68-76

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2006.885337

关键词

projection reconstruction; radial signal-to-noise ratio (MRI); real-time imaging; time-resolved imaging

向作者/读者索取更多资源

In dynamic magnetic resonance imaging (MRI) studies, the motion kinetics or the contrast variability are often hard to predict, hampering an appropriate choice of the image update rate or the temporal resolution. A constant azimuthal profile spacing (111.246 degrees), based on the Golden Ratio, is investigated as optimal for image reconstruction from an arbitrary number of profiles in radial MRI. The profile order is evaluated and compared with a uniform profile distribution in terms of signal-to-noise ratio (SNR) and artifact level. The favorable characteristics of such a profile order are exemplified in two applications on healthy volunteers. First, an advanced sliding window reconstruction scheme is applied to dynamic cardiac imaging, with a reconstruction window that can be flexibly adjusted according to the extent of cardiac motion that is acceptable. Second, a contrast-enhancing k-space filter is presented that permits reconstructing an arbitrary number of images at arbitrary time points from one raw data set. The filter was utilized to depict the T1-relaxation in the brain after a single inversion prepulse. While a uniform profile distribution with a constant angle increment is optimal for a fixed and predetermined number of profiles, a profile distribution based on the Golden Ratio proved to be an appropriate solution for an arbitrary number of profiles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据