4.5 Article

Seasonal photosynthesis and anthocyanin production in 10 broadleaf evergreen species

期刊

FUNCTIONAL PLANT BIOLOGY
卷 34, 期 12, 页码 1072-1079

出版社

CSIRO PUBLISHING
DOI: 10.1071/FP07205

关键词

chlorophyll; photoinhibition; photoprotection; pigments; winter

向作者/读者索取更多资源

Leaves of many evergreen species turn red when exposed to high sunlight during winter due to production of photoprotective anthocyanin pigments, while leaves of other species, lacking anthocyanin, remain green. Why some evergreen species synthesise anthocyanin pigments while others do not is currently unknown. Furthermore, the relative photosynthetic performance of anthocyanic (red) and acyanic (green) evergreens has yet to be described. Here we present seasonal ecophysiological data for five red and green broadleaf evergreen species. We hypothesise that species which synthesise anthocyanins in winter leaves correspond to those with the most drastic seasonal photosynthetic declines, as reduced energy sinks increase vulnerability to photoinhibition and need for photoprotection. Our results did not support this hypothesis, as gas exchange measurements showed no difference in mean seasonal photosynthetic capacity between red- and green-leafed species. Consistent with anthocyanin's shading effect, red- leafed species had significantly higher chlorophyll content, lower chlorophyll a/b ratios, and higher maximum light capture efficiency of PSII (F-v/F-m) than green-leafed species during the winter, but not during the summer (when all leaves were green). We conclude that anthocyanin production during winter is likely not associated with diminished photosynthetic capacity, and may simply represent an alternative photoprotective strategy utilised by some species during winter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据