4.7 Article

HS-116, a novel phosphatidylinositol 3-kinase inhibitor induces apoptosis and suppresses angiogenesis of hepatocellular carcinoma through inhibition of the PI3K/AKT/mTOR pathway

期刊

CANCER LETTERS
卷 316, 期 2, 页码 187-195

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.canlet.2011.10.037

关键词

PI3K; Apoptosis; Angiogenesis; HCC

类别

资金

  1. Korean Health Technology RD Project [A101185]
  2. Ministry of Health Welfare [1020250]
  3. National Research Foundation of Korea (NRF)
  4. Ministry of Education, Science and Technology [NRF 2011-0005255, 0003609, 0016436, 0020322]
  5. Korea Health Promotion Institute [A101185] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in cell proliferation and survival of human cancers. As PI3K is active in many cancer patients, resulting in cancer development and progression, we developed an azaindole derivative, HS-116 as a novel PI3K inhibitor. This study aimed to clarify the anticancer effect of HS-116 in human hepatocellular carcinoma (HCC). To identify the effect of HS-116 on HCC cells, a PI3K assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (KIT) assay, flow cytometry, and Western blotting were conducted. IC50 of HS-116 for PI3K alpha was 31 nM, and it effectively suppressed the phosphorylation of PI3K downstream factors such as AKT, mTOR, p70S6K, and 4EBP1. Also, HS-116 induced apoptosis by increasing the proportion of sub-G1 apoptotic cells from 1.8% to 35% and increasing the expressions of Bax, cleaved-caspase-3, and cleaved-PARP as well as decreasing the expression of Bcl-2. In addition, chromatin condensation and apoptotic bodies were detected in HS-116-treated HCC cells. Furthermore, HS-116 decreased protein expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and vascular endothelial growth factor (VEGF), and inhibited the tube formation and migration of human umbilical vein endothelial cells (HUVECs). In vivo, the ability of mice to vascularize subcutaneously implanted Matrigel plugs was diminished when the mice were treated with HS-116. These results show that HS-116 inhibits the PI3K/AKT/mTOR pathway via apoptosis and anti-angiogenesis in HCC cells. We suggest that HS-116 may be an effective novel therapeutic candidate against HCC. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据