4.2 Article

In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1369/jhc.6A7046.2006

关键词

bone sialoprotein; polyglutamic acid; mineralized matrix; binding capacity; immunocytochemistry

向作者/读者索取更多资源

Bone sialoprotein (BSP) is an anionic phosphoprotein expressed in mineralizing connective tissues that binds to hydroxyapatite and nucleates its formation in vitro. Two polyglutamic acid regions (poly [E]) are believed to participate in these activities. The aim of this study was to evaluate the contribution of these acidic regions to the binding of prokaryote recombinant BSP (prBSP(E)) within an actual in vivo environment. Full-length prBSPE and prBSPE in which the poly [E] domains were replaced by polyalanine (prBSP(A)) were tagged with dinitrophenol (DNP). Tagged preparations comprised intact molecules and some fragmented forms. They were infused through a surgically created hole in the bone of rat hemimandibles and detected using immunogold labeling with anti-DNP antibodies. prBSP(E)-DNP was consistently immunodetected along exposed mineralized bone surfaces and osteocyte canaliculi at the surgical site. Few gold particles were observed on these surfaces when prBSP(A)-DNP was infused. Quantitative analyses showed significant differences in labeling between prBSP(E)-DNP (5.04 +/- 0.73 particles/mu m(2)) and prBSP(A)-DNP (1.37 +/- 0.35 particles/mu m(2)). These results indicate that poly [E] domains influence binding of prBSPE to surfaces presenting a mixture of mineral and proteins bathed by tissue fluids and suggest that they may similarly mediate the interaction of native BSP in the bone environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据