4.5 Article

Pre-treatment of flax fibers for use in rotationally molded biocomposites

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684406072526

关键词

silane treatment; benzoylation; peroxide treatment; rotational molding; tensile strength; morphological characterization; water absorption

向作者/读者索取更多资源

The objective of this study was to determine the effects of pre-treated flax fibers on the performance of the fiber-reinforced composites. Lack of good interfacial adhesion and poor resistance to moisture absorption make the use of natural fiber-reinforced composites less attractive. In order to improve fiber/matrix interfacial properties, fibers were subjected to chemical treatments, namely, mercerization, silane treatment, benzoylation, and peroxide treatment. Selective removal of non-cellulosic compounds constitutes the main objective of the chemical treatments of flax fibers to improve the performance of fiber-reinforced composites. Flax fibers were derived from Saskatchewan-grown flax straws. Composites consisting of high-density polyethylene (HDPE) or linear low-density polyethylene (LLDPE) or HDPE/LLDPE mix, chemically treated fibers and additives were prepared by the extrusion process. The test samples were prepared by rotational molding. The fiber surface morphology and the tensile fracture surfaces of the composites were characterized by scanning electron microscopy (SEM). The effects of the different chemical treatments on the mechanical and the physical properties of natural fiber-reinforced composites were investigated. The differential scanning calorimetry (DSC) was used to measure the melting point of the fiber-reinforced composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据