4.2 Review

Metabolic acidosis: new insights from mouse models

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MNH.0b013e3282a4a69c

关键词

adaptation; ammoniagenesis; chloride-bicarbonate exchanger; hydrogen-adenosine triphosphatase; mouse models; renal tubular acidosis

向作者/读者索取更多资源

Purpose of review Metabolic acidosis is a severe disturbance of extracellular pH homeostasis that can be caused both by inborn or acquired defects in renal acid excretion or metabolic acid production. Chronic metabolic acidosis causes osteornalacia with nephrocalcinosis and urolithiasis. In the setting of end-stage renal disease, metabolic acidosis is often associated with increased peripheral insulin resistance, and represents an additional independent morbidity risk factor. This review summarizes recent insight, gained primarily from mouse models, into the mechanisms whereby the kidney regulates and adapts acid excretion. Recent findings Human genetics and various mouse models have shed new light on mechanisms that contribute to the kidney's ability to excrete acid and adapt appropriately to metabolism. Progress in four specific areas will be highlighted: mechanisms contributing to the synthesis and excretion of ammonia; insights into adaptive processes during acidosis; mechanisms by which the kidney may sense acidosis; and the pathophysiology of acquired and inborn errors of renal acid handling. Summary Genetic mouse models and various messenger RNA and proteome profiling and screening technologies demonstrate the importance of various acid-base transporting proteins and a metabolic and regulatory network that contributes to the kidney's ability to maintain the systemic acid-base balance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据