4.6 Review

Sumoylation in neurons: nuclear and synaptic roles?

期刊

TRENDS IN NEUROSCIENCES
卷 30, 期 3, 页码 85-91

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tins.2007.01.003

关键词

-

向作者/读者索取更多资源

Sumoylation is a post-translational modification that was originally thought to only target nuclear proteins. Evidence has emerged, however, that the role of sumoylation is much more diverse: three plasma membrane proteins belonging to different protein families (glucose transporters, K+ channels and metabotropic glutamate receptors) have been shown to be sumoylated. In addition, sumoylation of transcription factors, such as myocyte enhancer factor 2 (MEF2), was found to regulate synapse formation., A major role of sumoylation in other systems is to modify protein-protein interactions, and because protein interactions are particularly elaborate in the nervous system and crucial for synapse formation and function, sumoylation could constitute a major regulatory mechanism in neurons. In this review, we evaluate the available data and discuss possible roles for sumoylation in the regulation of crucial neurobiological processes, such as neuronal development and synaptic transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据