4.7 Article

Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 23, 期 4, 页码 711-732

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2006.08.002

关键词

phase transformation; constitutive behavior; crystal plasticity; finite elements; mechanical testing

向作者/读者索取更多资源

Recently, a rate-independent, finite-deformation-based crystal mechanics constitutive model for martensitic reorientation and detwinning in shape-memory alloys has been developed by Thamburaja [Thamburaja, P., 2005. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. Journal of the Mechanics and Physics of Solids 53, 825-856] and implemented in the ABAQUS/Explicit [Abaqus reference manuals. 2005. Providence, RI] finite-element program. In this work, we show that the aforementioned model is able to quantitatively predict the experimental response of an initially textured and martensitic polycrystalline Ti-Ni rod under a variety of uniaxial and multi-axial stress states. By fitting the material parameters in the model to the stress-strain response in simple tension, the constitutive model predicts the stress-strain curves for experiments conducted under simple compression, torsion, proportional-loading tension-torsion, and path-change tension-torsion loading conditions to good accord. Furthermore the constitutive model also reproduces the force-displacement response for an indentation experiment to reasonable accuracy. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据