4.2 Article

Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F-culmorum and F-pseudograminearium and identification of NPS2 as the producer of ferricrocin

期刊

CURRENT GENETICS
卷 51, 期 1, 页码 43-58

出版社

SPRINGER
DOI: 10.1007/s00294-006-0103-0

关键词

gene expression; prediction server; pathogenicity; siderophore; pseudogenes

向作者/读者索取更多资源

Fungi have the potential to produce a wide range of secondary metabolites including polyketides and small peptides produced by nonribosomal peptide synthetases (NPS). Fusarium graminearum is a mycotoxin producing pathogen of cereals and knowledge of the infection process is essential for the development of disease control. Bioinformatics provide a means to identify genes encoding NPSs, the products of which may act as fungal virulence factors. The F. graminearum genome sequence was analysed and similarity searches and application of prediction server service identified 15 putative NPS genes. NPS1 and NPS2, were found to be related to genes involved in NPS hydroxamate siderophore biosynthesis and chemical analysis of a F. graminearum NPS2 deletion mutant showed that this gene encodes the NPS responsible for the biosynthesis of ferricrocin. The expression of the NPS genes was analysed in Fusarium culmorum. NPS1 and NPS19 differed from the remainder of the genes, as they were only expressed during infection of barley roots and not under the different culture conditions tested. Strains of F. graminearum, F. culmorum and Fusarium pseudograminearum were examined for the presence and expression of the 15 identified NPS genes. With the exception of NPS18, that is absent in F. pseudograminearum, all the NPS genes are represented in the diffferent species. Lack of transcripts from some genes and the presence of frameshift and stop codons in four of the NPS genes in the sequenced F. graminearum strain suggest that some are pseudogenes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据