4.4 Article

Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets

期刊

JOURNAL OF GLACIOLOGY
卷 53, 期 183, 页码 694-712

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.3189/002214307784409351

关键词

-

向作者/读者索取更多资源

The spatial pattern of accumulation rate can be inferred from internal layers in glaciers and ice sheets. Non-dimensional analysis determines where finite strain can be neglected ('shallow-layer approximation') or approximated with a local one-dimensional flow model ('local-layer approximation'), and where gradients in strain rate along particle paths must be included ('deep layers'). We develop a general geophysical inverse procedure to infer the spatial pattern of accumulation rate along a steady-state flowband, using measured topography of the ice-sheet surface, bed and a 'deep layer'. A variety of thermomechanical ice-flow models can be used in the forward problem to calculate surface topography and ice velocity, which are used to calculate particle paths and internal-layer shapes. An objective tolerance criterion prevents over-fitting the data. After making site-specific simplifications in the thermomechanical flow algorithm, we find the accumulation rate along a flowband through Taylor Mouth, a flank site on Taylor Dome, Antarctica, using a layer at approximately 100 m depth, or 20% of the ice thickness. Accumulation rate correlates with ice-surface curvature. At this site, gradients along flow paths critically impact inference of both the accumulation pattern, and the depth-age relation in a 100 m core.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据