4.5 Article

Near-surface hydrologic response for a steep, unchanneled catchment near coos bay, oregon: 2. physics-based simulations

期刊

AMERICAN JOURNAL OF SCIENCE
卷 307, 期 4, 页码 709-748

出版社

AMER JOURNAL SCIENCE
DOI: 10.2475/04.2007.03

关键词

-

向作者/读者索取更多资源

The comprehensive physics-based hydrologic-response model InHM was used to simulate 3D variably-saturated flow and solute transport for three controlled sprinkling experiments at the Coos Bay 1 (CB1) experimental catchment in the Oregon Coast Range. The InHM-simulated hydrologic-response was evaluated against observed discharge, pressure head, total head, soil-water content, and deuterium concentration records. Runoff generation, tensiometric/piezometric response in the soil, pore-water pressure generation, and solute (tracer) transport were all simulated well, based on statistical and graphical model performance evaluation. The InHM simulations reported herein indicate that the 3D geometry and hydraulic characteristics of the layered geologic interfaces at CB1 can control the development of saturation and pore-water pressures at the soil-saprolite interface. The weathered bedrock piezometric response and runoff contribution were not simulated well with InHM in this study, most likely as a result of the uncertainty in the weathered bedrock layer geometry and fractured-rock hydraulic properties that preclude accurate fracture flow representation. Sensitivity analyses for the CBI boundary-value problem indicate that: (i) hysteretic unsaturated flow in the CB I soil is important for accurate hydrologic-response simulation, (ii) using an impermeable boundary condition to represent layered geologic interfaces leads to large errors in simulated magnitudes of runoff generation and pore-water pressure development, and (iii) field-based retention curve measurements can dramatically improve variably-saturated hydrologic-response simulation at sites with steep soil-water retention curves. The near-surface CBI simulations reported herein demonstrate that physics-based models like InHM are useful for characterizing detailed spatio-temporal hydrologic-response, developing process-based concepts, and identifying information shortfalls for the next generation of field experiments. The field-based observations and hydrologic-response simulations from CBI highlight the challenges in characterizing/simulating fractured bedrock flow at small catchments, which has important consequences for hydrologic response and landslide initiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据